Top Posts & Pages

Will climate change make our current system of nature reserves redundant?

By Amanda Healy

Ecological reservation is currently used as a primary technique for preserving species or ecosystems.  By disallowing the exploitation of an ecosystem, it is assumed that the area will be protected, and will therefore be able to exist into perpetuity. However, due to the rapidly increasing temperatures caused by anthropogenic climate change, many different species are moving away from their previous ranges into more climatically suitable locations (Chen et al., 2011; Loarie et al., 2009). This essay will look at how that may affect ecological reserves, and what we may need to do to keep up with the ever-changing climate.

Images showing predictions for global climate change in the coming years. From express.co.uk

Climate-change induced range shifts are occurring in a vast number of species (Shoo et al.,2006). One study found that on average, species are moving to higher latitudes and altitudes at rates of 16km and 11m per decade, respectively (Chen et al., 2011). These rates obviously vary, depending on the intensity of climate change in any given area and the ranging ability of the species in question; migratory species are able to shift their ranges quickly, but sedentary species (such as trees) take much longer (Parmesan et al., 1999).

 

Because of the movement of species out of their original ranges, our current system of protected reserves may become redundant in the future. One estimate states that in 100 years, only 8% of our reserves will still have the same climate as they have today (Loarie et al., 2009). This means that many of the species that we are aiming to protect will no longer be able to live within these reserves. They will either move outside of the reserve’s borders, or even worse, barriers will inhibit their movement and they will go locally extinct.

The protection of these reserved species will likely require assisted colonisation in the future (Lunt et al., 2013).  The barriers that inhibit the movement of species, such as habitat fragmentation or the fencing around reservations, mean that these species will need help to move to a habitat that is suitable in the changing climate. The same applies to species that are slow moving or sedentary, as they are unlikely to be able to keep pace with the rate of climate change (Parmesan et al., 1999). This concept goes against traditional ideas of conservation and reservation, as it would often mean introducing a species to a geographical area that they have never occupied previously (Hoegh-Gulberg et al., 2008). Most reservations work to preserve only species that are native to the area. However, in order to save many of these species, it will likely be the best option in the coming years.

For these reasons, it is likely that nature reserves, for the purpose of species or ecosystem preservation, have a limited lifespan. At some point, as temperatures continue to rise and climates continue to move, we will have to reconsider our concepts of reservation ecology. Alternative solutions will need to be considered in order to protect the organisms that these reserves are currently housing.

References

Chen, I. C., Hill, J. K., Ohlemüller, R., Roy, D. B., & Thomas, C. D. (2011). Rapid range shifts of species associated with high levels of climate warming. Science333(6045), 1024-1026.

Hoegh-Guldberg, O., Hughes, L., McIntyre, S., Lindenmayer, D. B., Parmesan, C., Possingham, H. P., & Thomas, C. D. (2008). Assisted colonization and rapid climate change. Science (Washington)321(5887), 345-346.

Loarie, S. R., Duffy, P. B., Hamilton, H., Asner, G. P., Field, C. B., & Ackerly, D. D. (2009). The velocity of climate change. Nature462(7276), 1052-1055.

Lunt, I. D., Byrne, M., Hellmann, J. J., Mitchell, N. J., Garnett, S. T., Hayward, M. W., … & Zander, K. K. (2013). Using assisted colonisation to conserve biodiversity and restore ecosystem function under climate change.Biological conservation157, 172-177.

Parmesan, C., Ryrholm, N., Stefanescu, C., Hill, J. K., Thomas, C. D., Descimon, H., … & Tennent, W. J. (1999). Poleward shifts in geographical ranges of butterfly species associated with regional warming. Nature,399(6736), 579-583.

Shoo, L. P., Williams, S. E., & Hero, J. (2006). Detecting climate change induced range shifts: Where and how should we be looking? Austral Ecology31(1), 22-29.

Willis, S. G., Hill, J. K., Thomas, C. D., Roy, D. B., Fox, R., Blakeley, D. S., & Huntley, B. (2009). Assisted colonization in a changing climate: a test‐study using two UK butterflies. Conservation Letters2(1), 46-52.

Advertisements


Leave a Reply

Fill in your details below or click an icon to log in:

WordPress.com Logo

You are commenting using your WordPress.com account. Log Out / Change )

Twitter picture

You are commenting using your Twitter account. Log Out / Change )

Facebook photo

You are commenting using your Facebook account. Log Out / Change )

Google+ photo

You are commenting using your Google+ account. Log Out / Change )

Connecting to %s