Top Posts & Pages

Should the Ability for Restoration Justify the Degradation, Damage, or Destruction of Environments?

By Olivia Quigan

Restoration is becoming an increasingly useful tool in conservation. We can now bring biodiversity back to an area that has been impaired beyond recognition by human activities, such as logging, damming, or open cast mining. Given that we are restoring more and more ecosystems around the world, does this give us leave to destroy ‘pristine’ habitats in order to exploit them to gain access to resources?

The benefits of destroying habitats in order to access resources are mostly of economic value. When cost-benefit analyses for an open cast mine are done, the only environmental outcomes that are considered are those that can be turned into a monetary value (Abelson, 2015). These are quantified as the physical impacts on the environment and how these impact health and agriculture (Abelson, 2015). This ignores the intrinsic value of unique species, as through losing them we reduce global biodiversity – a value that cannot be measured in currency (Campbell, 2014).

An argument could be made for destruction of habitats with a view to restoration, that given enough planning time, species can be saved before the habitat loss occurs. They could then be returned to the habitat during the restoration process, or found suitable homes elsewhere, that are similar to their current habitat. Translocation can be a valid restoration method, however not without its risks. This method was attempted in 2011. To allow for an open cast mine in New Zealand’s South Island, the unique and endemic Powelliphanta augusta Snails were collected and stored in shipping containers with the ultimate goal of introducing them to nearby forests. This resulted in the deaths of 800 individuals due to a technical failure of the refrigeration unit they were stored in (Vallance, 2011). This attempt was a failure, because even with the remaining snails being translocated, they are not

Coal mine in the South Island that displaced the Powelliphanta Snails (Public Domain)

Coal mine in the South Island that displaced the Powelliphanta Snails (Public Domain)

successfully persisting in their new environment, with death rates at new sites of up to thirty per cent (Morris, 2010). There are many other instances of failed translocations. Analyses of many reptile and amphibian translocations between 1991 and 2006 showed that up to 30 per cent of translocations failed in producing self-sustaining populations (Germano & Bishop, 2008). This rate of failure must force us to come to the conclusion that we do not yet have the knowledge to prevent extinctions in the case of a planned environmental degradation, especially when endemic species are involved, as the risk is often too high to justify needless environmental degradation.

 

The creation of novel landscapes is an inevitable outcome of the anthropogenic influence on the world. As we remove natural habitats, the areas that replace them won’t be the same; no matter how hard we try to restore them. A study by Lugo, Carlo and Wunderle Jr. (2011) looked at the islands of Puerto Rico and the introduced species there.

A native and endemic frog of Puerto Rico

The common Coqui: An endemic frog of Puerto Rico

The forest cover here dropped from 100 per cent to just six per cent by the 1940s. The restoration of much of the forest has included many introduced species, both plants and animals. The resulting forest was a mixture of both, but the native plant species continue to dominate the forests, with cover of over 80 per cent. Native birds continue to be successful, and forage on both natives and introduced plants. The introduced honeybee appears to have adapted to the phenology of the native plants and is an important pollinator (Lugo, Carlo, & Wunderle Jr., 2012).  This indicates that novel habitats created by restoration efforts can be sustained with introduced species, but we must continue to protect the native species to ensure lasting intrinsic value of the ecosystem.

Disturbed habitats are more likely to be susceptible to invading species. These are defined as species which “proliferate and noticeably replace native species,” (Clewell & Aronson, 2013). Invasive species with a more generalist way of life will have an advantage over native species, especially if these species have evolved into a more specialist niche (Clewell & Aronson, 2013). This is even more applicable in island habitats, where animals have evolved with limited predators. Using the land for agriculture or industry changes the scope of the ecosystem, and increases the vulnerability of it to invasions from non-native species (Vitousek, D’Antonio, Loope, Rejmanek, & Westbrooks, 1997). Human modification of environments is a major driver the invasion by non-native species. Logged forests in Thailand that were home to an invasive weed experienced an eight-fold reduction in pollinators visiting native species. The invasive beetle, Coccinella septempunctata, showed higher abundances in agricultural grasslands when compared to non-modified areas (Didham, Tylianakis, Gemmell, Rand, & Ewers, 2007). Due to the precious value of native species, the total destruction of a habitat cannot be justified as this disturbance leads to increased vulnerability to species invasions.

The complete destruction of a habitat will always be detrimental to the species living there. To destroy a habitat for monetary gain is to place a value on the uniqueness of habitats, and deem it less important than the economy. The evidence shows that we are not capable of maintaining the integrity of a habitat if we destroy it completely. Disturbed habitats are more likely to allow invasive species, which decimate native populations. Human attempts at preservation by translocation of species often fail. As we cannot guarantee the safety of our unique species, we cannot justify the destruction of any habitat; regardless of how accomplished we are becoming at restoring them.

References:

Abelson, P. (2015). Cost–Benefit Evaluation of Mining Projects. The Australian Economic Review, 442-52.

Campbell, R. (2014). Seeing through the dust: Coal in the Hunter Valley Economy. Canberra: The Australia Institute.

Clewell, A. F., & Aronson, J. (2013). Ecological Restoration – Principles, Values & Structure of an Emerging Profession (2nd ed.). Washington, D.C: Island Press.

Didham, R. K., Tylianakis, J. M., Gemmell, N. J., Rand, T. A., & Ewers, R. M. (2007). Interactive effects of habitat modification and species invasion on native species decline. Trends in Ecology and Evolution, 22(9), 489-496.

Germano, J. M., & Bishop, P. J. (2008). Suitability of Amphibians and Reptiles for Translocation. Conservation Biology, 7-15.

Lugo, A. E., Carlo, T. A., & Wunderle Jr., J. M. (2012). Natural mixing of species: Novel plant-animal communities on Caribbean Islands. Animal Conservation, 233-241.

Morris, R. (2010). An Unfortunate Experiment. Forest And Bird, 14-16.

Vallance, N. (2011, November 10). Snail fridge deaths an avoidable tragedy. Retrieved from Forest and Bird: http://www.forestandbird.org.nz/what-we-do/publications/media-release/snail-fridge-deaths-avoidable-tragedy

Vitousek, P. M., D’Antonio, C. M., Loope, L. L., Rejmanek, M., & Westbrooks, R. (1997). Introduced Species: A significant component of Human-caused Global Change. New Zealand Journal of ecology, 1-16.

 

Advertisements


Leave a Reply

Fill in your details below or click an icon to log in:

WordPress.com Logo

You are commenting using your WordPress.com account. Log Out / Change )

Twitter picture

You are commenting using your Twitter account. Log Out / Change )

Facebook photo

You are commenting using your Facebook account. Log Out / Change )

Google+ photo

You are commenting using your Google+ account. Log Out / Change )

Connecting to %s